

 Navigation

 	
 index

 	
 next |

 	cakephp-annotation-control-list 3.0.0 documentation

Welcome to CakePHP AnnotationControlList’s documentation!

A simple, annotation-based ACL System for CakePHP

Background

For the CakePHP book [http://josediazgonzalez.com/cakephp-book/] I wrote, I thought it would make sense to showcase to users how they might come up with an alternative to the ACL system that comes with CakePHP. As annotations are an interesting way of adding attributes to actions - and it’s relatively easy to modify during application development - I decided that a method to do so via annotations would be the way to go.

Requirements

	PHP 5.6+

	CakePHP 3.2+

	 Installation
	Using Composer

	Enable plugin

	 Role-based Usage
	Setup

	Requiring roles for a given action

	Special Roles

	Available Classes

	Custom Authenticate Classes

	 Model-based Usage
	Setup

	Requiring roles for a given action

	Special Roles

	Available Classes

	Custom Authenticate Classes

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cakephp-annotation-control-list 3.0.0 documentation

Installation

The only officialy supported method of installing this plugin is via composer.

Using Composer [http://getcomposer.org/]

View on
Packagist [https://packagist.org/packages/josegonzalez/cakephp-annotation-control-list],
and copy the json snippet for the latest version into your project’s
composer.json. Eg, v. 3.0.0 would look like this:

{
 "require": {
 "josegonzalez/cakephp-annotation-control-list": "3.0.0"
 }
}

This plugin has the type cakephp-plugin set in its own
composer.json, composer knows to install it inside your /Plugins
directory, rather than in the usual vendors file. It is recommended that
you add /Plugins/Upload to your .gitignore file. (Why? read
this [http://getcomposer.org/doc/faqs/should-i-commit-the-dependencies-in-my-vendor-directory.md].)

Enable plugin

You need to enable the plugin your config/bootstrap.php file:

<?php
Plugin::load('Josegonzalez/AnnotationControlList');

If you are already using Plugin::loadAll();, then this is not
necessary.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cakephp-annotation-control-list 3.0.0 documentation

Role-based usage

The AnnotationControlList plugin has two modes of usage. The role mode requires no more configuration than an @roles annotation on your action.

Setup

Setup your AuthComponent to use the AnnotationAuthorize and AnnotationFormAuthenticate classes:

public function initialize()
{
 parent::initialize();
 $this->loadComponent('Auth', [
 'authenticate' => [
 'Josegonzalez/AnnotationControlList.AnnotationForm' => [
 'passwordHasher' => 'Blowfish',
 'roleField' => 'role', // `roleField` is `role` by default
]
],
 'authorize' => [
 'Josegonzalez/AnnotationControlList.Annotation',
 'roleField' => 'role', // `roleField` is `role` by default
],
]);
}

Requiring roles for a given action

Annotate your methods with the roles you want to allow:

/**
 * @roles all
 */
public function index() {}

/**
 * @roles authenticated
 */
public function add() {}

/**
 * this is a list of roles
 * @roles anonymous, some_other_role
 */
public function register() {}

/**
 * this is also a list of roles
 * @roles ["admin", "a_special_role"]
 */
public function admin() {}

You can specify one or more roles in any of the above formats. If no role is specified for an action, then no user will be allowed access.

Special Roles

The following roles have a special meaning:

	all: All users will have this role

	anonymous: Users that have not yet authenticated against your app will have this role

	authenticated: Users that have been authenticated fall in this role

Available Classes

The following classes are available for your convenience:

	AnnotationAuthorize

	AnnotationBasicAuthenticate

	AnnotationDigestAuthenticate

	AnnotationFormAuthenticate

These extend the core classes and override the following methods:

	isAuthorized

	getActionRoles

	getPrefixedAnnotations

	getAnnotations

	processRoles

	authorize

	unauthenticated

	getController

	prefix

Custom Authenticate Classes

The AnnotationFormAuthenticate class extends FormAuthenticate to override the unauthorized() method, allowing us to use the annotations to define access even if the user has not yet authenticated. You can follow this pattern for any Authenticate class you create/use by adding the following to either your custom authenticate class or a subclass of one of the core classes:

use AnnotationParserTrait;

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	cakephp-annotation-control-list 3.0.0 documentation

Model-based usage

The AnnotationControlList plugin has two modes of usage. The model mode requires more configuration than the role mode, but also allows you to extend access control to include information from your database records.

Setup

Setup your AuthComponent to use the AnnotationAuthorize and AnnotationFormAuthenticate classes:

public function initialize()
{
 parent::initialize();
 $this->loadComponent('Auth', [
 'authenticate' => [
 'Josegonzalez/AnnotationControlList.ModelForm' => [
 'passwordHasher' => 'Blowfish',
 'roleField' => 'role', // `roleField` is `role` by default
]
],
 'authorize' => [
 'Josegonzalez/AnnotationControlList.Model',
 'roleField' => 'role', // `roleField` is `role` by default
],
]);
}

Requiring roles for a given action

Annotate your methods with the roles you want to allow:

/**
 * @isAuthorized.roles all
 */
public function index() {}

/**
 * @isAuthorized.roles authenticated
 */
public function add() {}

/**
 * this is a list of roles
 * @isAuthorized.roles anonymous, some_other_role
 */
public function register() {}

/**
 * this is also a list of roles
 * @isAuthorized.roles ["admin", "a_special_role"]
 */
public function admin() {}

/**
 * Only allows authenticated users access if the finder returns data
 * @isAuthorized.roles authenticated
 * @isAuthorized.table Post
 * @isAuthorized.find active
 */
public function active_post() {
}

/**
 * Only allows authenticated users access if the Post.check_active()
 * method returns data
 *
 * @isAuthorized.roles authenticated
 * @isAuthorized.table Post
 * @isAuthorized.method check_active
 */
public function active_post() {
}

/**
 * Only allows authenticated users access if the finder returns data
 *
 * If the authenticated user's "group" field is "admin", then they are
 * allowed access without further database checks
 *
 * @isAuthorized.roles authenticated
 * @isAuthorized.always ["group", "admin"]
 * @isAuthorized.table Post
 * @isAuthorized.find active
 */
public function always_if_admin() {
}

/**
 * Only allows authenticated users access if the finder returns data
 *
 * If the authenticated user's "group" field is "admin", then they are
 * allowed access without further database checks
 *
 * If the user's "group" field matches the "Post.group_name", then they are
 * allowed access, otherwise they are denied access. You can have multiple
 * "if" conditions, and if any are true, then access is granted
 * @isAuthorized.roles authenticated
 * @isAuthorized.always ["group", "admin"]
 * @isAuthorized.table Post
 * @isAuthorized.find edit
 * @isAuthorized.conditions.if ["group", "Post.group_name"]
 */
public function edit_post() {
}

When a Model::find() is called, the current request parameters - as well as the user_id - are passed into the find as options. This can be used to further limit the data being retrieved. If an alternative model method is specified, then the current request parameters and user_id are passed in as the first argument.

You can specify one or more roles in any of the above formats. If no role is specified for an action, then no user will be allowed access.

Special Roles

The following roles have a special meaning:

	all: All users will have this role

	anonymous: Users that have not yet authenticated against your app will have this role

	authenticated: Users that have been authenticated fall in this role

Available Classes

The following classes are available for your convenience:

	ModelAuthorize

	ModelBasicAuthenticate

	ModelDigestAuthenticate

	ModelFormAuthenticate

These extend the core classes and override the following methods:

	isAuthorized

	getActionRoles

	getPrefixedAnnotations

	getAnnotations

	processRoles

	authorize

	unauthenticated

	getController

	prefix

	performCheck

	checkAlwaysRule

	checkIfRules

	getData

	getFinder

	missingFinder

	ensureList

	isAssoc

Custom Authenticate Classes

The AnnotationFormAuthenticate class extends FormAuthenticate to override the unauthorized() method, allowing us to use the annotations to define access even if the user has not yet authenticated. You can follow this pattern for any Authenticate class you create/use by adding the following to either your custom authenticate class or a subclass of one of the core classes:

use ModelParserTrait;

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	cakephp-annotation-control-list 3.0.0 documentation

Index

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		cakephp-annotation-control-list 3.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.4.

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

